Муниципальное бюджетное общеобразовательное учреждение «Школа №120»

Приложение к основной образовательной программе среднего общего образования МБОУ Школа № 120»

РАБОЧАЯ ПРОГРАММА

по биологии 10 – 11 классы

Рабочая программа разработана на основе программы по биологии по биологии авт. И.Б. Агафонова, Н.В. Бабичев, В. И. Сивоглазов. Биология: 10–11 классы. Соответствует требованиям Федерального государственного образовательного стандарта среднего общего образования.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Личностные результаты

В процессе курса ожидается достижение следующих личностных результатов:

- формирование собственной позиции по отношению к биологической информации, получаемой из разных источников;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни;
- сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- проявление чувства российской гражданской идентичности, патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину;
- ответственное отношение к учебе, готовность и способность к самообразованию;
- формирование мотивации к обучению и познанию, осознанному выбору будущей профессии;
- способность строить индивидуальную образовательную траекторию;
- формирование целостного естественнонаучного мировоззрения;
- соблюдение правил поведения в природе;
- умение реализовывать теоретические познания на практике;
- способность признавать собственные ошибки и исправлять их;
- умение аргументированно и обоснованно отстаивать свою точку зрения;
- критичное отношение к собственным поступкам, осознание ответственности за их результаты;
- уважительное и доброжелательное отношение к другим людям;
- умение слушать и слышать других, вести дискуссию, оперировать фактами.

Метапредметными результатами освоения курса являются:

- овладение составляющими проектной и исследовательской деятельности по изучению общих биологических закономерностей, свойственных живой природе;
- умение самостоятельно определять цели и составлять планы;
- способность самостоятельно осуществлять, контролировать и корректировать учебную и внеучебную (включая внешкольную) деятельность; выбирать успешные стратегии в различных ситуациях;
- умение осуществлять самостоятельную информационно-познавательную деятельность, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников.
- умение работать с учебником, составлять конспект параграфа;
- умение разрабатывать план-конспект темы, используя разные источники информации;
- умение готовить устные сообщения и рефераты на заданную тему;
- умение пользоваться поисковыми системами интернета.

В предметной области на базовом уровне предполагаются следующие предметные результаты у учащихся:

- формирование представлений о роли и месте биологии в современной научной картине мира;
- понимание роли биологии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- овладение основополагающими понятиями и представлениями о живой природе, ее уровневой организации и эволюции;
- выявление существенных признаков биологических объектов и процессов;
- приведение доказательств (аргументации) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды;
- сравнение биологических объектов и процессов, умение делать выводы и умозаключения на основе сравнения;
- уверенное пользование биологической терминологией и символикой;
- овладение способами выявления и оценки антропогенных изменений в природе;
- формирование умений объяснять результаты биологических экспериментов, решать элементарные биологические задачи.

Выпускник на базовом уровне научится:

- раскрывать на примерах роль биологии в формировании современной картины мира и практической деятельности людей;
- понимать и описывать взаимосвязь между естественными науками: биологией, физикой, химией; устанавливать взаимосвязи природных явлений;
- понимать смысл, различать и описывать системную связь между основополагающими биологическими понятиями: «клетка», «организм», «вид», «экосистема», «биосфера»;
- использовать основные методы научного познания в учебных биологических исследованиях;
- приводить эксперименты по изучению биологических объектов, явлений, объяснять результаты экспериментов;
- анализировать их, формулировать выводы;
- формулировать гипотезы на основании предложенной биологической информации и предлагать варианты проверки гипотез;
- сравнивать биологические объекты между собой по заданным критериям, делать выводы, умозаключения на основе сравнения;
- обосновывать единство живой и неживой природы, родство живых организмов, взаимосвязи друг с другом и окружающей средой;
- распознавать клетки по описанию, на схематических изображениях и устанавливать связь строения и функций;
- распознавать популяции и биологический вид по основным признакам; описывать фенотип многоклеточных растений и животных по морфологическому критерию;
- объяснять многообразие организмов, применяя эволюционную теорию;
- объяснять причины наследственности и выявлять изменчивость у организмов;
- оценивать достоверность биологической информации, полученной из разных источников, выделять необходимую информацию для использования в учебной деятельности и решения практических задач;
- представлять биологическую информацию в виде текста, таблицы, графика,

диаграммы и делать выводы на основание представленных данных;

- объяснять последствия влияния негативных веществ, различных мутагенов;
- объяснять возможные причины наследственных заболеваний.

Выпускник на базовом уровне получит возможность научиться:

- давать научное объяснение биологическим фактам, процессам, явлениям, закономерностям, использовать биологические теории, учение о биосфере, законы наследственности и закономерности изменчивости;
- характеризовать современные направления в развитии биологии;
- описывать их возможное использование в практической деятельности;
- сравнивать способы деления клетки (митоз и мейоз);
- решать задачи на построение фрагмента второй цепи ДНК по предложенному фрагменту первой, иРНК по участку ДНК;
- решать задачи на определение количества хромосом в соматических и половых клетках, а так же в клетках перед началом деления и по его окончанию;
- решать генетические задачи на моногибридное скрещивание и составлять схемы моногибридного скрещивания, применяя законы наследственности и используя биологическую терминологию и символику;
- устанавливать тип наследования и характер проявления признака по заданной схеме родословной, применяя законы наследственности;
- оценивать результаты взаимодействия человека и окружающей среды, прогнозировать возможные последствия деятельности человека для существования отдельных биологических объектов и целых природных сообществ.

2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

10 класс

Введение

Место курса «Общая биология» в системе естественнонаучных дисциплин, а также среди биологических наук. Цель и задачи курса. Значение предмета для понимания единства всего живого, взаимосвязи всех частей биосферы Земли. Система живой природы. Царства живой природы.

Раздел 1. Биология как наука. Методы научного познания

Кратка история развития биологии

Структура биологии как науки. Биологические науки о форме и строении организмов. Систематика. Эволюционное учение. Классификация биологических наук. Этапы развития биологии.

Сущность жизни и свойства живого

Определение жизни. Химический состав и клеточное строение организмов, населяющих Землю. Обмен веществ и саморегуляция в биологических системах. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи. Рост и развитие. Раздражимость. Ритмичность процессов жизнедеятельности. Дискретность и целостность.

Уровни организации живой материи. Биологические системы как предмет изучения биологии. Методы биологии

Уровни организации живой природы. Иерархия уровней. Методы познания

Раздел 2. Клетка

История изучения клетки. Клеточная теория

Клетка как структурная и функциональная единица живого. История изучения клетки. Прокариотическая и эукариотические клетки. Принципиальная схема строения клетки. Клеточная теория и ее основные положения.

Химический состав клетки

Элементарный состав клетки. Распространенность элементов, их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы, ультрамикроэлементы; их вклад в образование неорганических и органических молекул живого вещества.

Неорганические вещества клетки

Неорганические молекулы живого вещества: вода; химические свойства и биологическая роль. Соли неорганических кислот, их вклад в обеспечение процессов жизнедеятельности и поддержание гомеостаза. Роль катионов и анионов в обеспечении процессов жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку.

Органические вещества. Общая характеристика. Липиды

Органические молекулы. Низкомолекулярные и высокомолекулярные соединения. Липиды: строение, классификация и биологическая роль.

Органические вещества. Углеводы. Белки

Углеводы: строение и биологическая роль. Моносахариды и полисахариды.

Белки — биологические полимеры; их структурная организация. Функции белковых молекул. Белки-ферменты. Структуры белка: первичная, вторичная, третичная, четвертичная. Денатурация и ренатурация белков.

Органические вещества. Нуклеиновые кислоты

ДНК — молекулы наследственности. Редупликация ДНК, передача наследственной информации из поколения в поколение. Передача наследственной информации из ядра в цитоплазму; транскрипция. РНК: структура и функции. Информационные, транспортные, рибосомальные РНК.

Эукариотическая клетка. Цитоплазма. Органоиды

Эукариотическая клетка. Плазматическая мембрана и ее функции. Цитоплазма эукариотической клетки. Органоиды цитоплазмы, их структура и функции. Классификация органоидов. Цитоскелет. Включения, их значение и роль в метаболизме клеток. Особенности строения растительной клетки.

Клеточное ядро. Хромосомы

Клеточное ядро — центр управления жизнедеятельностью клетки. Структуры клеточного ядра: ядерная оболочка, хроматин (гетерохроматин), ядрышко. Хромосомы. Кариотип.

Прокариотическая клетка

Прокариотические клетки; форма и размеры. Строение цитоплазмы бактериальной клетки; организация метаболизма у прокариот. Генетический аппарат бактерий. Спорообразование. Размножение. Место и роль прокариот в биоценозах.

Реализация наследственной информации в клетке

Ген, генетический код, свойства генетического кода. Этапы реализации генетической информации в клетке (транскрипция и трансляция).

Неклеточная форма жизни: вирусы

Особенности строения и размножения вирусов. Жизненный цикл ВИЧ. Вирусные заболевания и профилактика их распространения. СПИД и меры его профилактики.

Раздел 3. Организм

Организм – единое целое. Жизнедеятельность и регуляция функций организма

Разнообразие организмов (одноклеточные и многоклеточные организмы). Многоклеточный организм как дискретная система (ткани, органы). Колониальные организмы.

Обмен веществ и превращение энергии. Энергетический обмен

Обмен веществ и превращение энергии в клетке. Пластический и энергетический обмен. АТФ как универсальный источник энергии. Макроэргические связи. Этапы энергетического обмена, расщепление глюкозы.

Пластический обмен. Фотосинтез. Хемосинтез

Типы питания. Автотрофы и гетеротрофы. Фотосинтез. Фазы фотосинтеза. Особенности обмена веществ у растений, животных и грибов.

Деление клетки. Митоз

Клетки Деление клеток. Понятие В многоклеточном организме. дифференцировке многоклеточного организма. Митотический клеток фазы интерфаза, редупликация ДНК; митоз, митотического преобразования хромосом; биологический смысл и значение митоза (бесполое потерь размножение, рост, восполнение клеточных физиологических патологических условиях).

Размножение: бесполое и половое

Сущность и формы размножения организмов. Бесполое размножение растений и животных. Виды бесполого размножения. Варианты вегетативного размножения. Половое размножение животных и растений; гаметы, половой процесс. Биологическое значение полового размножения.

Образование половых клеток у животных. Мейоз

Мейоз и его отличия от митоза. Биологическое значение мейоза. Гаметогенез. Этапы образования половых клеток: размножение, рост, созревание (мейоз) и формирование половых клеток. Особенности сперматогенеза и овогенеза. Значение гаметогенеза.

Оплодотворение

Оплодотворение и его сущность. Биологический смысл оплодотворения. Варианты оплодотворения (наружное, внутреннее, перекрестное, самооплодотворение, естественное и искусственное). Особенности оплодотворения растений. Двойное оплодотворение у покрытосеменных.

Индивидуальное развитие организмов

Эмбриональный период развития. Основные закономерности дробления; образование однослойного зародыша — бластулы. Гаструляция; закономерности образования двухслойного зародыша — гаструлы. Первичный органогенез и дальнейшая дифференцировка тканей, органов и систем. Постэмбриональный период развития. Формы постэмбрионального периода развития. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития с метаморфозом. Прямое развитие.

Онтогенез человека. Репродуктивное здоровье

Особенности эмбрионального развития человека. Процессы, происходящие на ранних этапах эмбриогенеза (формирование морулы и бластулы). Предплодный и плодный периоды. Рождение. Постэмбриональный период развития: дорепродуктивный, репродуктивный периоды, старение и смерть. Критические периоды онтогенеза. Влияние никотина, алкоголя и наркотиков на развитие зародыша и репродуктивное здоровье человека.

Генетика — наука о закономерностях наследственности и изменчивости. Г. Мендель — основоположник генетики

Открытие Г. Менделем закономерностей наследования признаков. Основные понятия генетики (ген, локус, гомологичные хромосомы, гомозигота, гетерозигота, доминантность, рецессивность, генотип, фенотип). Гибридологический метод изучения наследственности.

Закономерности наследования. Моногибридное скрещивание

Моногибридное скрещивание. Доминантные и рецессивные признаки. Аллели и аллельные гены. Гомозиготы и гетерозиготы. Первый закон Менделя — закон единообразия гибридов первого поколения (правило доминирования). Второй закон Менделя — закон расщепления. Закон (гипотеза)

чистоты гамет. Цитологические основы моногибридного скрещивания.

Закономерности наследственности. Дигибридное скрещивание

Дигибридное скрещивание. Третий закон Менделя — закон независимого наследования признаков. Анализирующее скрещивание.

Хромосомная теория наследственности

Хромосомная теория наследственности. Закон Моргана. Группа сцепления. Причины нарушения сцепления генов.

Современные представления о гене и геноме

Геном. Генотип как система взаимодействующих генов. Взаимодействия аллельных и неаллельных генов.

Генетика пола

Хромосомное определение пола. Аутосомы и половые хромосомы. Гомогаметный и гетерогаметный пол. Признаки, сцепленные с полом.

Изменчивость: наследственная и ненаследственная

Изменчивость как одно из основных свойств живых организмов. Наследственная (генотипическая, индивидуальная, неопределенная). Мутационная и комбинативная изменчивость. Мутации и мутагены. Ненаследственная (определенная, групповая, модификационная) изменчивость.

Модификации. Норма реакции.

Генетика и здоровье человека

Генетика человека и ее разделы. Методы генетики человека. Наследственные болезни, генные и хромосомные. Соматические и генеративные мутации. Принципы здорового образа жизни, диагностики, профилактики и лечения генетических болезней. Медико-генетическое консультирование.

Доместикация и селекция: основные методы и достижения

Селекция. Порода, сорт, штамм. Методы селекции. Центры происхождения культурных растений. Вклад Н. И. Вавилова в развитие генетики и селекции.

Биотехнология: достижения и перспективы развития

Биотехнология. Генная инженерия. Генетически модифицированные организмы. Клонирование. Этические аспекты биотехнологии.

11 класс

Раздел 1. Вид

Развитие биологии в додарвиновский период. Работа К. Линнея

Эволюция и эволюционное учение. История эволюционных идей. Креационизм и трансформизм. Систематика как наука. Значение работ К. Линнея по систематике растений и животных. Бинарная номенклатура.

Эволюционная теория ж. Б. Ламарка

Учение о градации живых организмов и понятие «лестница существ». Теория катастроф Кювье. Законы Ламарка (упражнение и неупражнение органов и наследование благоприобретенных признаков). Представления Ламарка об изменчивости. Значение теории Ламарка.

Предпосылки возникновения учения Ч. Дарвина

Предпосылки возникновения учения Ч. Дарвина: достижения в области естественных и социально-экономических наук (космогоническая теория Канта—Лапласа, достижения в области химии, закон единства организма и среды Рулье—Сеченова, принцип корреляции Кювье, работы

К. Бэра, работы Ч. Лайеля, работы А. Смита и Т. Мальтуса).

Эволюционная теория Ч. Дарвина

Экспедиционный материал Ч. Дарвина. Учение Дарвина об изменчивости. Учение Дарвина об искусственном отборе. Всеобщая индивидуальная изменчивость и избыточная численность потомства. Борьба за существование и естественный отбор. Виды борьбы за существование. Предпосылки борьбы за существование и естественного отбора. Значение теории Дарвина. Понятие о синтетической теории эволюции.

Вид: критерии и структура

Вид как генетически изолированная система; репродуктивная изоляция и ее механизмы. Критерии вида: морфологический, физиологический, биохимический, генетический, экологический, географический.

Популяция как структурная единица вида

Популяционная структура вида; экологические и генетические характеристики популяций. Демографические показатели и структура популяции.

Популяция как единица эволюции

Популяция — элементарная эволюционная единица. Элементарный эволюционный материал и элементарное эволюционное явление.

Факторы эволюции

Элементарные эволюционные факторы (мутационный процесс, изоляция, популяционные волны, дрейф генов, естественный отбор). Формы естественного отбора (стабилизирующий, движущий, дизруптивный). Виды изменчивости. Резерв изменчивости.

Естественный отбор — главная движущая сила эволюции

Формы естественного отбора (стабилизирующий, движущий, дизруптивный). Адаптация организма к условиям обитания как результат действия естественного отбора

Приспособительные особенности строения, окраски тела и поведения животных. Поведенческие адаптации. Биохимические адаптации. Физиологические адаптации. Относительная

целесообразность адаптаций.

Видообразование как результат эволюции

Пути (способы) и скорость видообразования; географическое и экологическое видообразование. Географическая и экологическая изоляция.

Сохранение многообразия видов как основа устойчивого развития биосферы

Биологический прогресс и биологический регресс. Причины вымирания видов. Биологическое разнообразие.

Доказательства эволюции органического мира

Цитологические и молекулярно-биологические (молекулярно- генетические), сравнительно-анатомические (сравнительно- морфологические), палеонтологические, эмбриологические и биогеографические доказательства эволюции.

Развитие представлений о происхождении жизни на земле

Концепции абиогенеза и биогенеза. Опыты Ф. Реди, Л. Спаланцани и М. М. Тереховского, опыт Л. Пастера. Гипотезы стационарного состояния и панспермии.

Современные представления о возникновении жизни

Органический мир как результат эволюции. Возникновение и развитие жизни на Земле. Химический, предбиологический (теория академика А. И. Опарина) и биологический этапы развития живой материи. Теория биопоэза.

Развитие жизни на земле

Развитие жизни на Земле в архейскую и протерозойскую эры. Первые следы жизни на Земле. Появление всех современных типов беспозвоночных животных. Первые хордовые. Развитие водных растений. Развитие жизни на Земле в палеозойскую эру. Появление и эволюция сухопутных растений. Папоротники, семенные папоротники, голосеменные растения. Возникновение позвоночных: рыбы, земноводные, пресмыкающиеся. Развитие жизни на Земле в мезозойскую и кайнозойскую эры. Появление и распространение покрытосеменных растений. Возникновение птиц и млекопитающих. Появление и развитие приматов. Появление человека.

Гипотезы происхождения человека

Антропогенез и его движущие силы. Представления о происхождении человека в разные периоды истории науки.

Положение человека в системе животного мира

Происхождение человека. Место человека в живой природе. Систематическое положение вида Homo sapiens в системе животного мира. Признаки и свойства человека, позволяющие отнести его к различным систематическим группам царства животных.

Эволюция человека

Стадии эволюции человека: приматы — предки человека, австралопитек, человек умелый, древнейший человек, древний человек, первые современные люди.

Человеческие расы

Популяционная структура вида Homo sapiens; человеческие расы; расообразование; единство происхождения рас. Приспособительное значение расовых признаков. Видовое единство человечества.

Раздел 2. Экосистема

Организм и среда. Экологические факторы

Организм и среда. Факторы среды обитания. Классификация экологических факторов. Влияние факторов среды на организм. Пределы выносливости. Зона оптимума, зона угнетения. Ограничивающий фактор. Закон минимума Либиха. Экологическая ниша.

Абиотические факторы среды

Факторы среды обитания и приспособления к ним живых организмов. Абиотические факторы среды. Роль температуры, освещенности, влажности и других факторов в жизнедеятельности сообществ и организмов.

Биотические факторы среды

Биотические факторы среды. Формы взаимоотношений между организмами. Позитивные отношения — симбиоз: мутуализм, кооперация, комменсализм. Антибиотические отношения: хищничество, паразитизм, конкуренция. Нейтральные отношения — нейтрализм.

Структура экосистем

Естественные сообщества живых организмов. Биогеоценозы. Компоненты биогеоценозов: продуценты, консументы, редуценты. Биоценозы: видовое разнообразие, плотность популяций, биомасса.

Пищевые связи. Круговорот веществ и поток энергии в экосистемах

Цепи и сети питания. Трофические уровни. Экологические пирамиды: чисел, биомассы, энергии. Круговорот веществ и энергии в экосистемах.

Причины устойчивости и смены экосистем

Изменение сообществ. Смена экосистем. Динамическое равновесие.

Влияние человека на экосистемы

Экологические нарушения. Агроценозы.

Биосфера — глобальная экосистема

Биосфера — живая оболочка планеты. Структура биосферы. Компоненты биосферы: живое вещество, видовой состав, разнообразие и вклад в биомассу; биокосное и косное вещество биосферы (В. И. Вернадский). Круговорот веществ в природе. Границы биосферы.

Роль живых организмовв биосфере

Роль живого вещества в биосфере. Круговорот воды и углерода в биосфере.

Биосфера и человек

Прямое и косвенное влияние человека на биосферу. Природные ресурсы и их использование. Антропогенные факторы воздействия на биоценозы (роль человека в природе); последствия хозяйственной деятельности человека. Ноосфера.

Основные экологические проблемы современности

Антропогенное влияние на атмосферу и гидросферу. Эрозия почвы. Природные ресурсы и их использование.

Пути решения экологических проблем

Проблемы рационального природопользования, охраны природы: защита от загрязнений, сохранение эталонов и памятников природы, обеспечение природными ресурсами населения планеты. Основы рационального природопользования.

3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс (1 раз в неделю, всего 34 ч)

№	Тема	Кол-во часов	Количество лабораторных и практических работ
1	Биология как наука. Методы научного познания	3	
2	Клетка	11	Лабораторная работа – 2
3	Организм	20	Лабораторная работа – 2 Практическая работа - 2 Экскурсия – 1
	Итого:	34 ч	

11 класс (1 раз в неделю, всего 33 ч)

№	Тема	Кол-во часов	Количество лабораторных и практических работ
1	Вид	21	Лабораторная работа - 2
2	Экосистема	12	Лабораторная работа – 1 Экскурсия - 2
	Итого:	33 ч	